

Equivalency Criteria

- Regulations (40 CFR.221 (d))
 - Prevent migration of hazardous constituents into the groundwater of surface water at least as effectively as the standard liner system.
 - Allow leak detection through the top liner at least as effectively as the standard liner system.
- Other Technical Criteria (Koerner and Daniel (1993))
 - Hydraulic (leakage rate, steady flux)
 - Physical/Mechanical (freeze-thaw, wet-dry)
 - Construction/Operations (leak monitor, maintenance and repair)

Equivalency Analysis

- Primary lining system
 - Alternative exceeds requirements of standard design (40 CFR 264.221)
 - Double geomembrane with GCL vs. Single geomembrane
- Secondary Lining System
 - GCL vs. CCL with drastically reduced leakage potential with alternative

Summary of Equivalency Analysis

 Primary lining system provides superior leakage protection and ability to access and monitor leaks

Leakage Rate Calculations for Geomembrane Defect.

		Leakage Rate		
Liner system	Standard/Alternate	(gpad)	Design Condition	
Primary	Standard	8,325	Large defect	
	Standard	261	Small defect	
	Alternate	1.8 to 9.8	Large defect; good to poor contact	
	Alternate	1.3 to 6.9	Small defect; good to poor contact	
Secondary	Standard	3.6 ×10 ⁻³ to 2.0 ×10 ⁻²	Large defect; good to poor contact	
	Standard	2.5 ×10 ⁻³ to 1.4 ×10 ⁻²	Small defect; good to poor contact	
	Alternate	4.2 ×10 ⁻⁴ to 2.3 ×10 ⁻³	Large defect; good to poor contact	
	Alternate	3.0 ×10 ⁻⁴ to 1.6 ×10 ⁻³	Small defect; good to poor contact	

^{**} Action Leakage Rate for surface impoundment based on EPA guidance is approximately 1000-2000 gpad.

Summary of technical equivalency assessment for secondary evaporation pond lining system.

Issue	Criteria for Evaluation	Category 1	Category 2	Category 3	Category 4
Hydraulic	Steady flux of water	X			
	Leakage rate	X			
	Horizontal flow	Χ			
	Attenuative capacity		X		
Physical/Mechanical	Freeze-thaw	X			
	Wet/dry	X			
	Erosion vulnerability	Χ			
Const./Operations	Speed of construction	X	At		×
	Puncture resistance			X	X
	Weather constraints	X			
	Water requirements	. ,, , X		1	
	Access maintenance and repair	X			

- The Alternative is more effective (Category 1)
- The Alternative is equivalent (Category 2)
- The Alternative is not equivalent (Category 3)
- •Site-specific design, operation, or QA/QC conditions to make each alternative equivalent or superior (Category 4).

Conclusions of Equivalency Analysis

• Clear superiority of alternative primary lining system with overall superiority of alternative secondary lining system demonstrate that the alternative is at least equivalent to the standard design.

Key Advantages of the Alternative Design:

- A redundant composite primary liner system, which is more protective against leakage.
- The CCL component of the standard design cannot provide resistance to freeze/thaw cycles without potential compromise of performance and integrity, or without protective layers over the liners that would impair functionality or serviceability, or increase waste generation.
- The primary liner system can be readily accessed for maintenance and repair.
- There will be no contaminated soil requiring disposal either during periodic replacement of the operations layer or at the time of evaporation pond closure.
- Leakage from the primary lining system surface can be easily monitored and repaired as needed.

IDEQ/EPA Comments and Issues

- Unconfined (Free) Swell
- Freeze-Thaw Resistance
- Attenuation provided by CCL
- HDPE as selected geomembrane material